Stability and Convergence Trade-off of Iterative Optimization Algorithms
نویسندگان
چکیده
The overall performance or expected excess risk of an iterative machine learning algorithm can be decomposed into training error and generalization error. While the former is controlled by its convergence analysis, the latter can be tightly handled by algorithmic stability (Bousquet and Elisseeff, 2002). The machine learning community has a rich history investigating convergence and stability separately. However, the question about the trade-off between these two quantities remains open. In this paper, we show that for any iterative algorithm at any iteration, the overall performance is lower bounded by the minimax statistical error over an appropriately chosen loss function class. This implies an important trade-off between convergence and stability of the algorithm – a faster converging algorithm has to be less stable, and vice versa. As a direct consequence of this fundamental tradeoff, new convergence lower bounds can be derived for classes of algorithms constrained with different stability bounds. In particular, when the loss function is convex (or strongly convex) and smooth, we discuss the stability upper bounds of gradient descent (GD) and stochastic gradient descent and their variants with decreasing step sizes. For Nesterov’s accelerated gradient descent (NAG) and heavy ball method (HB), we provide stability upper bounds for the quadratic loss function. Applying existing stability upper bounds for the gradient methods in our trade-off framework, we obtain lower bounds matching the well-established convergence upper bounds up to constants for these algorithms and conjecture similar lower bounds for NAG and HB. Finally, we numerically demonstrate the tightness of our stability bounds in terms of exponents in the rate and also illustrate via a simulated logistic regression problem that our stability bounds reflect the generalization errors better than the simple uniform convergence bounds for GD and NAG.
منابع مشابه
A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملA Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملStrong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings
In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018